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Abstract

The convergence of a Runge–Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit
operator. With the extended stability of the Runge–Kutta scheme, CFL numbers as high as 1000 can be used. The implicit
preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. This RK/implicit scheme
is used as a smoother for multigrid. Fourier analysis is applied to determine damping properties. Numerical dissipation
operators based on the Roe scheme, a matrix dissipation, and the CUSP scheme are considered in evaluating the
RK/implicit scheme. In addition, the effect of the number of RK stages is examined. Both the numerical and computational
efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the
two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier–Stokes equations. Turbulent
flows over an airfoil and wing at subsonic and transonic conditions are computed. The effects of the cell aspect ratio on
convergence are investigated for Reynolds numbers between 5:7� 106 and 100� 106. It is demonstrated that the implicit
preconditioner can reduce the computational time of a well-tuned standard RK scheme by a factor between 4 and 10.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Computational fluid dynamics has expanded rapidly in recent years and problems with increasing complex-
ity are being solved. While relatively good computational efficiency has been attained for the Euler equations,
there are still significant challenges remaining for the Navier–Stokes equations. As a near term objective one
should seek comparable efficiency to that for the Euler equations. A major obstacle in achieving such a goal is
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the geometrical stiffness of the discrete Navier–Stokes equations caused by the requirement to adequately
resolve viscous boundary layers with an economical distribution of grid points. We are also confronted with
the dilemma of improving computational efficiency while minimizing computer storage, especially in 3-D
simulations.

One powerful solution strategy for solving large scale problems in fluid dynamics is multigrid [1–4]. The
multigrid approach offers the possibility of solving discrete partial differential equations with grid independent
convergence rates. Although most of the theory developed for multigrid is for elliptic problems, effective mul-
tigrid solvers [5,6] have been constructed for the Euler equations, which are hyperbolic in time. Jameson and
Caughey [7] demonstrated that an Euler solution for airfoil flows, converged to the level of the truncation
error, could be obtained in 3–5 multigrid cycles. However, this method slowed down considerably for laminar
viscous flows with moderate cell aspect ratios. Multigrid methods for hyperbolic problems depend on two ele-
ments to accelerate convergence. One element is the smoothing of high-frequency components of the solution
error. The choice of an iterative scheme for smoothing is crucial, since multigrid requires a smooth solution
error to approximate a fine grid problem on a coarser grid. In addition, the smoother must be effective on the
coarser grids, since these grids are responsible for removing the low-frequency error modes that cause slow
asymptotic convergence of iterative schemes. The second element for accelerating convergence is the expulsion
of errors on the coarse grids, which occurs faster for time-like iterative methods due to the larger time steps
permitted on coarser grids.

Many multigrid methods that are currently used for solving the Euler and Navier–Stokes equations rely
upon an explicit multistage time stepping scheme for a smoother. Frequently this explicit scheme is augmented
with a scalar implicit residual smoothing [8] to extend stability, allowing the use of larger time steps. This com-
bination proved to be quite effective in solving inviscid flow problems. In addition, such schemes have been
applied effectively to a wide variety of viscous flow problems in both two and three dimensions [9,10]. How-
ever, convergence rates slower than 0.99 are encountered when solving turbulent viscous flows.

For viscous flow problems the anisotropy due to grid cell aspect ratio reduces the effectiveness of the high-
frequency damping in certain coordinate directions. There are two principal techniques that can reduce or
even eliminate the dramatic slowdown that can occur due to such geometrical stiffness. One approach is
semi-coarsening, where coarse grids are generated by coarsening in one direction rather than all directions.
Mulder [11] generalized this type of coarsening to treat the flow alignment problem (i.e. vanishing damping
in a coordinate direction normal to the flow) and also the cell aspect ratio problem. The primary difficulties
with such an approach are programming complexity and increased operation count, especially in three dimen-
sions. In order to reduce the operation count a directional coarsening was considered [12,13]. For example, in
a 2-D flow the grid was coarsened only in the direction normal to a solid boundary (sometimes called j-line
coarsening), resulting in a reduced cell aspect ratio and improved smoothing.

The second technique for reducing geometrical stiffness is to apply an implicit method in the direction of
strongest coupling. In two dimensions appropriate line relaxation allows the removal of the adverse effects
on convergence due to aspect ratio. Thus, efforts have been made to improve the performance of the implicit
residual smoothing used in conjunction with Runge–Kutta schemes. The simple diffusion operator in this
implicit process was replaced with a convection operator that includes flux Jacobians [14]. Since approximate
factorization was used for the inversion of the implicit operator, there was still a strong limitation on the
time step allowed. To reduce the complexity of the operator, as well as to eliminate the factorization error,
a directional smoothing was developed [15], where smoothing was performed in only the wall normal direction
(i.e. j-line smoothing). With this approach the time step was limited by the other coordinate directions. These
directional coarsening and smoothing methods have not been widely adopted due to their programming com-
plexity and limited applicability in general block-structured grid formulations. When using unstructured grids,
the inherent lack of structure in the grid introduces additional challenges. Nonetheless, Mavriplis [16] success-
fully combined j-line coarsening, j-line smoothing, and Jacobi preconditioning with an unstructured grid
method to demonstrate cell aspect ratio independent convergence rates for 2-D, turbulent, viscous airfoil flow
computations.

The directional methods can significantly mitigate, and when combined appropriately even eliminate, the
effects of cell aspect ratio in two dimensions; they are considerably less effective when applied to general
3-D problems [17]. Furthermore, there is still a significant stability restriction (Courant–Friedrichs–Lewy
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(CFL) number generally less than 10), which reflects the explicit nature of the foundation Runge–Kutta (RK)
scheme. In order to extend the generality of the implicit procedure and significantly augment the stability
bound of the RK scheme, Rossow [18] introduced a fully implicit operator instead of a scalar implicit residual
smoothing procedure. This RK/implicit scheme requires the computation of the flux Jacobians that appear in
the flow equations. To reduce storage Rossow expressed the Jacobians in terms of the Mach number and com-
puted them with each application of the residual smoothing. The implicit operator was approximately inverted
with symmetric point Gauss–Seidel iteration. The Roe scheme was used for the dissipation in the implicit oper-
ator and the residual function. With the RK/implicit scheme CFL numbers exceeding 100 were attained in
turbulent airfoil flow calculations.

In the present work we evaluate the RK/implicit scheme, both with computation and analysis, and extend it
to three dimensions. The flexibility of the scheme is investigated by considering the effect of choosing alterna-
tive numerical dissipation operators. As a result, we demonstrate that the preconditioned RK scheme can be
implemented with similar benefits in a variety of existing multigrid methods with a multistage time stepping
scheme as a smoother. The RK/implicit scheme is applied to several airfoil flows, including a transonic case
with strong shock/boundary-layer interaction. In addition, the performance of the scheme for Reynolds num-
bers between 5:7� 106 and 100� 106 is considered. At the highest Reynolds number the maximum grid cell
aspect ratio exceeds 50,000. To assess the scheme in three dimensions turbulent viscous flow over an ONERA
M6 wing is computed. For all the calculations the convergence behavior and computational effort for the
scheme are discussed.
2. Governing equations

We consider both the 2-D and 3-D Navier–Stokes equations for compressible flow. Assuming a volume
fixed in space and time, the integral form of these equations can be written as
Z Z Z

V

oW

ot
dVþ

Z Z
S

F � ndS ¼ 0; ð2:1Þ
where the symbol o indicates partial differentiation, W is the state vector of conservative variables, F is the
flux density tensor, and V; S, and n denote the volume, surface, and outward facing normal of the control
volume. One can split the flux density tensor into a convective contribution Fc and a viscous contribution Fv,
which are given by
Fc ¼

qq

quqþ pex

qvqþ pey

qwqþ pez

qHq

26666664

37777775; Fv ¼

0

�s � ex

�s � ey

�s � ez

�s � q�Q

26666664

37777775; ð2:2Þ
where q is the velocity vector with Cartesian components ðu; v;wÞ, and the unit vectors ðex; ey ; ezÞ are associated
with the Cartesian coordinates ðx; y; zÞ. The variables q, p, H represent density, pressure, and total specific en-
thalpy, respectively. The stress tensor �s and the heat flux vector Q are given by
�s ¼
sxx sxy sxz

syx syy syz

szx szy szz

264
375; Q ¼ k

oT=ox

oT =oy

oT=oz

264
375 ð2:3Þ
with k denoting the coefficient of thermal conductivity and T representing the temperature.
In order to close the system given by Eq. (2.1) we use the equation of state
p ¼ qRT ; ð2:4Þ

where R is the specific gas constant.
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3. Numerical algorithms

We first briefly describe the standard solution scheme for solving the compressible Navier–Stokes equations
that will be used as a reference. Variations of this scheme are considered based on the choice of the numerical
dissipation scheme. A principal component of the standard scheme is scalar implicit residual smoothing, which
provides additional support for the basic iterative scheme, and thus, allows extended stability. A replacement
of this component of the standard scheme is the basis for the alternative scheme that allows dramatically
improved convergence rates. This alternative formulation is discussed in the second part of this section.

3.1. RK/standard scheme

There are three basic elements in the standard solution scheme: a multistage time-stepping scheme, implicit
residual smoothing, multigrid acceleration. We consider, as in many existing computer codes for flow compu-
tations, a five-stage Runge–Kutta (RK) scheme. This scheme can be written as
Wð0Þ ¼Wn;

Wð1Þ ¼Wð0Þ � a1DtRðWð0ÞÞ;

..

.

Wð5Þ ¼Wð0Þ � a5DtRðWð4ÞÞ;
Wnþ1 ¼Wð5Þ;

ð3:1Þ
where R is the vector residual function, Dt is the time step, the superscript n denotes time level, the superscript
enclosed in parentheses indicates the RK stage, and the RK coefficients [19] are given by
½a1; . . . ; a5� ¼ ½0:25; 0:1667; 0:375; 0:5; 1:0�:
For convenience we have omitted the indices of the grid points. The residual function RðqÞ is defined by
RðqÞ ¼ RðWðqÞÞ ¼ 1

V
LcW

ðqÞ þ
Xq

r¼0

cqrLvWðrÞ þ
Xq

r¼0

cqrLdWðrÞ

" #
ð3:2Þ
with
P

cqr ¼ 1 for consistency. The operators Lc; Lv, and Ld relate to the convection, viscous, and numer-
ical dissipation terms. Central differencing is used to approximate the convective and viscous operators. The
coefficients cqr are the weights of the viscous and dissipation terms on each stage (see Ref. [20]), which are ta-
ken to be [1, 0, 0.56, 0, 0.44]. Such a scheme is frequently designated as a RK(5, 3) scheme, since it has 5 stages
and the dissipation terms are evaluated only at three stages.

To extend the stability of the RK scheme we apply implicit residual smoothing, which is defined by
ð1� bnd
2
nÞð1� bgd

2
gÞð1� bfd

2
fÞRðqÞ ¼ RðqÞ; ð3:3Þ
where d2 is the standard central difference operator for a diffusion term, and ðn; g; fÞ are the coordinates of a
uniformly spaced computational domain. The parameter b is a local function of the grid aspect ratio. There
are several ways to define this function (for examples see [21,20]). After inverting the product operator in Eq.
(3.3) we substitute RðqÞ for R(q) in Eq. (3.1). For the inversion scalar tridiagonal solves are performed in each
coordinate direction.

One can view the implicit residual smoothing as a preconditioner, and the multistage scheme can be viewed
as a smoother for the multigrid method. As a smoother the scheme should be designed so that it has good
high-frequency damping properties. A Fourier analysis shows that the five-stage RK scheme alone smooths
effectively the high-frequency components of the solution error. However, with the addition of implicit resid-
ual smoothing, there is significant deterioration in the smoothing behavior of the RK scheme [20]. In evalu-
ating the resulting scheme one must also consider the improved stability of the scheme, which allows faster
error propagation in the coarse grid process of multigrid.
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In the standard scheme the full approximation scheme (FAS) is applied to the nonlinear system of equa-
tions. Consider a fine grid and a sequence of successively coarser grids generated by eliminating every other
mesh line in each coordinate direction. Let the index k denote the kth grid. Let Ik�1

k be the fine-to-coarse grid
restriction operator and Ik

k�1 be the coarse-to-fine grid prolongation operator. If Wk is the current solution on
grid k, the residual on this grid is Rk � fk �LkWk, where fk is a forcing function. This leads to the coarse-grid
equation
Lk�1Wk�1 ¼ fk�1 ¼ �Ik�1
k Rk þLk�1ðIk�1

k WkÞ: ð3:4Þ
After solving the coarse-grid equation for Wk�1, the fine-grid solution is corrected by
Wk  Wk þ Ik
k�1ðWk�1 � Ik�1

k WkÞ: ð3:5Þ
Eq. (3.4) is solved by applying the same relaxation procedure that is used to solve the fine-grid equation. On
the coarse grids, the second-order approximation of the convective operator, which is used on the fine grid, is
reduced to first order. Multigrid is applied recursively to the coarse-grid equation.

The restriction operators for transferring the residual and solution values from a fine grid to a coarse grid
are the ones proposed by Jameson [6] for a cell-centered, finite-volume scheme. The residual and solution
restriction operators are defined, respectively, by a summing of the residuals and by a volume weighting of
the solution values over the fine-grid cells that comprise a coarse-grid cell. Coarse-grid corrections are trans-
ferred with a bilinear (2-D) or trilinear (3-D) interpolation operator. A conventional V-cycle or W-cycle is
used to execute the multigrid process.

3.2. Discretization and dissipation

Using the finite-volume technique for spatial discretization, Eq. (2.1) can be written in semidiscrete form as
oW

ot
þ 1

V

X
all faces

FnS ¼ 0; ð3:6Þ
where Fn is the normal flux density vector at the cell face, now V represents the volume of a computational
cell, and S is the area of a cell face. The convective part of the flux density vector Fc can be expressed as
Fc ¼
1

2
ðFL þ FRÞ þD; ð3:7Þ
where FL and FR are the left and right states of the inviscid flux density vector normal to the cell interface, and
D is the numerical dissipation. With this flux vector we construct a central difference approximation plus
numerical dissipation. Central differencing is used to approximate the physical diffusion terms.

In the present work we consider three different forms for the dissipation. One form comes from Roe’s flux
difference split scheme [22], and it can be written as
D ¼ � 1

2
jAjðWR �WLÞ ¼ � 1

2
jAjDW; ð3:8Þ
where A is the flux Jacobian at a cell face. For this form we use jAjDW expressed in terms of the cell interface
Mach number M0, according to Rossow [23]. The Mach number M0 is given by
M0 ¼ minðjM j; 1ÞsignðMÞ: ð3:9Þ

The resulting form for jAjDW is given in Appendix A, and the expression for jAj is given in Ref. [24]. For sec-
ond-order accuracy the symmetric limited positive (SLIP) scheme of Jameson [25] is used following the imple-
mentation of Swanson et al. [26].

Another dissipation formulation considered is closely related to that of the Roe scheme. It is generally
called matrix dissipation (see [27]). There is one principal difference between the Roe scheme dissipation
and the matrix dissipation. The SLIP scheme is replaced by a scalar switching function (i.e. Jameson–
Schmidt–Turkel switch [28]), which uses a pressure function to change from third-order dissipation in smooth
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regions to first-order dissipation in the neighborhood of shocks. Both dissipation forms impose entropy con-
ditions to ensure nonvanishing convective and acoustic eigenvalues of the inviscid Jacobian matrix.

The third dissipation scheme is the convective upwind and split pressure (CUSP) scheme. Jameson [25]
designed this scheme so that it can support single interior point discrete shock waves. For this scheme the dis-
sipation flux can be written as
D ¼ � 1

2
�mDW� 1

2
bDF ð3:10Þ
with �m and b being parameters determined such that single interior point shocks are permitted. Discussion and
analysis of the CUSP scheme and the HCUSP version are given in Ref. [26]. We note that all of these schemes
are upwind type schemes.

3.3. RK/implicit scheme

Define the update for the qth stage of a RK scheme as
WðqÞ ¼Wð0Þ þ dWðqÞ; ð3:11Þ

where
dWðqÞ ¼WðqÞ �Wð0Þ ¼ �aq
Dt
V

LWðq�1Þ ð3:12Þ
and L is the complete difference operator given in Eq. (3.2). To extend the support of the difference scheme we
consider implicit residual smoothing. Applying the smoothing technique of Ref. [8] we have the following:
LidWðqÞ ¼ dWðqÞ; ð3:13Þ

where Li is an implicit operator. By approximately inverting the operator Li we obtain
dWðqÞ ¼ �aq
Dt
V

PLWðq�1Þ ¼ �aq
Dt
V

P
X

all faces

Fðq�1Þ
n S; ð3:14Þ
where P is a preconditioner defined by the approximate inverse fL�1
i . The change dWðqÞ replaces the explicit

update appearing in Eq. (3.11). Thus, each stage in the RK scheme is preconditioned by an implicit operator.
Unlike the standard scheme, which uses a diffusion operator for the implicit operator Li, a first-order

upwind approximation based on the Roe Scheme is used for the convective derivatives in the implicit operator.
To derive this operator one treats the spatial discretization terms in Eq. (3.6) implicitly and applies lineariza-
tion. For a detailed derivation see Rossow [18]. Substituting for the implicit operator in Eq. (3.13), we obtain
for the qth stage of the RK scheme
I þ e
Dt
V

X
all faces

AnS

" #
dWðqÞ ¼ �aq

Dt
V

X
all faces

Fðq�1Þ
n S ¼ bRðq�1Þ; ð3:15Þ
where the matrix An is the flux Jacobian associated with the normal flux density vector Fn at a cell face, bRðq�1Þ

represents the residual function for the (q � 1)th stage, and e is a parameter to be determined. The matrix An

can be decomposed into Aþn and A�n , which are defined by
Aþn ¼
1

2
ðAn þ jAnjÞ; A�n ¼

1

2
ðAn � jAnjÞ: ð3:16Þ
If we substitute for An in Eq. (3.15) using the definitions of Eq. (3.16), then the implicit scheme can be written
as
I þ e
Dt
V

X
all faces

Aþn S

" #
dW

ðqÞ
i;j;k ¼ bRðq�1Þ

i;j;k �
Dt
V

X
all faces

A�n dW
ðqÞ
NBS; ð3:17Þ
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where the indices ði; j; kÞ indicate the cell of interest, and NB refers to all the direct neighbors of the cell being
considered. As discussed by Rossow [18], the quantity A�n dW represents the flux density change associated
with waves having a negative wave speed (i.e. waves that enter the cell ði; j; kÞ from outside). Only the neighbor
cells NB can contribute to these changes in flux density. Similarly, the quantity Aþn dW represents flux density
changes associated with positive wave speeds (i.e. waves that leave the cell ði; j; kÞ). These flux density changes
are determined only by information from within the cell ði; j; kÞ.

To solve Eq. (3.17) for the changes in conservative variables dW
ðqÞ
i;j;k, the 5� 5 matrix (a 4� 4 matrix in two

dimensions) on the left-hand side of Eq. (3.17) must be inverted. It is sufficient to approximate the inverse of
the implicit operator. An adequate approximate inverse is obtained with three symmetric Gauss–Seidel
sweeps. To initialize the iterative process the unknowns are set to zero. Alternative iterative methods such
as red-black Gauss–Seidel could also be used (see Ref. [29]), which would allow the RK/implicit scheme to
be applied on unstructured grids.

To efficiently evaluate the Jacobian matrices Aþn and A�n we rely upon their forms when expressed in terms
of the cell interface Mach number M0. For simplification, we transform Eq. (3.15) to the set of primitive vari-
ables ½ q p u v w �T. Thus,
I þ e
Dt
V

X
all faces

PnS

" #
dUðqÞ ¼ � oU

oW
aq

Dt
V

X
all faces

Fðq�1Þ
n S; ð3:18Þ
where the matrix Pn, which is the analog of the normal flux Jacobian expressed in primitive variables, is given
by
Pn ¼
oU

oW
An

oW

oU
¼ oU

oW
ðAþn þ A�n Þ

oW

oU
¼ Pþn þ P�n : ð3:19Þ
The Jacobian oU=oW on the right-hand side of Eq. (3.18) must multiply the conservative flux balance in order
to ensure conservation. Using the definitions of Eq. (3.16) and the dissipation matrix, which is defined in
Appendix A, one can determine the matrices Pþn and P�n , which are also given in Appendix A. The resulting
matrices can easily be recomputed, only requiring storage for the normal velocity magnitude and the Mach
number M0. The contributions of the viscous flux Jacobians can be included in a straightforward manner
using primitive variables (see Ref. [20]). We present the viscous Jacobian for the thin-layer form of the Na-
vier–Stokes equations in Appendix A.

Due to the upwind approximation used for the implicit operator, the coefficients for the RK scheme are
also based on an upwind scheme. Now the numerical dissipation is evaluated at every stage. For three-stage
and five-stage schemes, we use respectively the RK coefficients from Ref. [30] of
½a1; . . . ; a3� ¼ ½0:15; 0:4; 1:0�;
½a1; . . . ; a5� ¼ ½0:0695; 0:1602; 0:2898; 0:5060; 1:0�:
We summarize the implementation of the RK/implicit scheme as follows. In the first step, the explicitly eval-
uated residuals of a RK stage are transformed to residuals in primitive variables to form the right-hand side of
Eq. (3.18). Next, we approximately invert the implicit operator with symmetric Gauss–Seidel. This yields new
residuals in primitive variables, which are transformed to conservative variables. As the final step, the new
residuals (i.e. new changes) are used in the RK stage to update the conservative variables.

4. Fourier analysis

In designing a rapidly converging scheme for solving the Euler and Navier–Stokes equations there are sev-
eral factors one must consider. First, if the scheme is to be used as a smoother for multigrid, then it must have
good damping of high-frequency error components. In addition, one should design the scheme to cluster the
residual eigenvalues corresponding to the high-frequency modes away from the origin in the complex plane.
Another important factor is the magnitude of the CFL number. The scheme should be constructed so that the
CFL number is sufficiently large to produce significant reduction (if not elimination) of the convergence slow-
down effects that are associated with high-aspect ratio mesh cells. A large CFL number also facilitates the
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expulsion of error components. At the same time the capability for large CFL numbers must not compromise
the high-frequency damping property of the scheme. The RK/implicit scheme can satisfy both of these criteria.
In constructing these types of schemes there are several factors to consider.

An important consideration in designing RK/implicit schemes is the selection of the RK coefficients. We
have selected coefficients that have been determined so as to give optimal damping of high frequencies for
a given spatial differencing operator. However, the damping behavior of the RK scheme is changed due to
the introduction of the implicit preconditioner. In order to ensure good h-ellipticity (high-frequency damping)
of the scheme, a parameter is introduced into the implicit operator. This parameter, which we designate by e,
multiplies the implicit spatial operator (see Eq. (4.15)) and takes on a role similar to that of b in the scalar
preconditioner of the RK/standard scheme. The magnitude of e for best damping depends on the number
of RK stages. When reducing the number of RK stages, the lower limit is a RK(1,1) implicit scheme, which
essentially represents the classical backward Euler implicit scheme. Fourier analysis shows that such a scheme
is unconditionally stable and exhibits good damping properties if the implicit (LHS) and explicit (RHS) dis-
cretizations match. However, for practical applications usually only a first-order discretization is employed for
the LHS operator, whereas second-order accuracy is required for the RHS operator. This still provides uncon-
ditional stability, but the damping properties of the scheme are impaired. Therefore, we consider only schemes
with at least two stages. As we will demonstrate shortly one can determine a sufficiently small e so as to have
good damping over a broad range of frequencies and maintain stability.

In order to use the preconditioner one must compute the inverse of the implicit operator at each RK stage.
How well this inverse approximates the implicit operator can have a significant impact on the performance of
the RK/implicit scheme. For example, if lexicographic pointwise symmetric Gauss–Seidel (SGS) is used to
approximately invert the implicit operator, then one must determine the number of symmetric sweeps that
is appropriate, keeping in mind computational effort as well as convergence rate. Another important factor
for the RK/implicit scheme is the number of stages. Choosing a small number of RK stages is beneficial
for a low computational effort. In reducing the number of stages one must make sure that the eigenvalue clus-
tering property of the scheme is not seriously compromised. We apply Fourier analysis to evaluate the prop-
erties of different RK/implicit schemes.

For the Fourier analysis we consider a finite domain with periodic boundary conditions. We take a Fourier
transform of the discretized form of the linearized (constant coefficient), time-dependent Euler equations when
solved with a RK scheme combined with an implicit preconditioner. Initially, as a reference, we consider a
standard RK(5, 3) scheme preconditioned with a scalar implicit residual smoothing. Then we compare the
damping properties of this scheme with those of several RK schemes with a fully implicit preconditioner.
A principal objective is to evaluate these schemes, which we call RK/implicit schemes, as smoothers for a
full-coarsened multigrid method. An additional objective is to provide guidance in determining the implicit
parameter e.

The Fourier analysis is applied to the 2-D, nonconservative Euler equations with the solution vector
½ s u v p �T. Consider the domain X ¼ fðx; yÞ : 0 6 x 6 1; 0 6 y 6 1g. Define a Cartesian grid with
m� n cells and spacings hx and hy. Let Wj1;j2

denote the discrete solution vector that resides at the mesh point
ðj1hx; j2hyÞ. Now consider the semi-discrete form of the flow equations, which can be written as
Dt
d

dt
Wj1;j2

¼ �Dt
V

LhWj1;j2
; ð4:1Þ
where Lh is the linearized discrete residual operator defined by
Lh � Adx þ Bdy ð4:2Þ

with A and B being flux Jacobian matrices and d representing a difference operator. The spatial discretization
is carried out by upwind biased differencing. Using the left and right eigenvectors of the Jacobian matrices A

and B to generate similarity transformations we obtain
jAj ¼ SjKAjS�1; jBj ¼ T jKBjT�1: ð4:3Þ

Expressing the second-order upwind difference approximation as a sum of a central difference and numerical
dissipation, the discrete linear residual operator is written as
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Lh ¼Lh
c þLh

d; ð4:4Þ

where
Lh
c ¼

hy

2
½AðEþ1

x � E�1
x Þ� þ

hx

2
½BðEþ1

y � E�1
y Þ�; ð4:5Þ

Lh
d ¼

hy

4
½jAjðE�2

x � 4E�1
x þ 6� 4Eþ1

x þ Eþ2
x Þ� þ

hx

4
½jBjðE�2

y � 4E�1
y þ 6� 4Eþ1

y þ Eþ2
y Þ�: ð4:6Þ
The shift operators E�l
x and E�l

y are defined by
E�l
x Wj1;j2

¼Wj1�l;j2
; E�l

y Wj1;j2
¼Wj1;j2�l: ð4:7Þ
Taking the discrete Fourier transform of Eq. (4.1) we obtain
Dt
d

dt
cWk1;k2

¼ DcWk1;k2
¼ cWnþ1

k1;k2
�cWn

k1;k2
¼ �Dt

V
cLhcWk1;k2

; ð4:8Þ
where the superscript n refers to time step. The transformed discrete vector function is given by
cWk1;k2
¼ 1

mf nf

Xmf�1

j1¼0

Xnf�1

j2¼0

Wj1;j2
exp½�iðj1hx þ j2hyÞ� ð4:9Þ
and the phase angles hx and hy are defined by
hx ¼ 2p
k1

mf
; hy ¼ 2p

k2

nf
: ð4:10Þ
The wave numbers are given by
k1 ¼ �
1

2
mf � 1

� �
; . . . ;

1

2
mf ; k2 ¼ �

1

2
nf � 1

� �
; . . . ;

1

2
nf : ð4:11Þ
The transformed residual operator cLh is a function of the transformed shift operators, which are defined by
bEx � expðihxÞ; bEy � expðihyÞ; �p < hx 6 p; �p < hy 6 p: ð4:12Þ

If we apply a q-stage RK scheme (with the numerical dissipation computed on each stage) to integrate in time
Eq. (4.8), then
cWnþ1

k1;k2
¼ Grk

cWn
k1;k2

; ð4:13Þ
where the amplification matrix Grk is given by
Grk ¼ I � �aq
cLh þ �aq�aq�1ðcLhÞ2 � �aq�aq�1�aq�2ðcLhÞ3 þ � � � � ð�aq�aq�1 � � � �a1ÞðcLhÞq ð4:14Þ
with I denoting the identity matrix and the �aq representing the product of the RK coefficient and the time step
divided by the volume of the mesh cell (Dt=V). For the RK/implicit scheme we introduce an implicit
preconditioner
P�1 ¼ Li ¼ I þ e
Dt
V
½hyðAþðI � E�1

x Þ � A�ðI � Eþ1
x ÞÞ� þ e

Dt
V
½hxðBþðI � E�1

y Þ � B�ðI � Eþ1
y ÞÞ�; ð4:15Þ
where the matrices Aþ; Bþ and A�; B� associated with the positive and negative eigenvalues, respectively, of
the matrices A and B are defined according to Eq. (3.16). The implicit parameter e allows the RK/implicit
scheme to be designed to effectively damp high-frequency error modes. Then, for the qth stage of the RK
scheme we have
cWðqÞ

k1;k2
¼ cWð0Þ

k1;k2
� aq

Dt
V
bPcLhcWðq�1Þ

k1;k2
: ð4:16Þ
The amplification matrix of the RK/implicit scheme is obtained by replacing cL with bPcL in Eq. (4.14), giving
Grki ¼ I � �aq
bPcLh þ �aq�aq�1ð bPcLhÞ2 � �aq�aq�1�aq�2ð bPcLhÞ3 þ � � � � ð�aq�aq�1 � � � �a1Þð bPcLhÞq: ð4:17Þ
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We approximate the inverse of the implicit operator with pointwise symmetric Gauss–Seidel iterations. For
one symmetric sweep the approximate inverse is given by
P ¼ ðL�i Þ
�1 þ ½I � ðL�i Þ

�1Li�ðLþi Þ
�1
; ð4:18Þ
where Li is the implicit operator defined in Eq. (4.15), and Lþi and L�i are the implicit operators defined by
Lþi ¼ I þ e
Dt
V
fhy ½AþðI � E�1

x Þ � A�� þ hx½BþðI � E�1
y Þ � B��g; ð4:19Þ

L�i ¼ I � e
Dt
V
fhy ½A�ðI � Eþ1

x Þ � Aþ� þ hx½B�ðI � Eþ1
y Þ � Bþ�g: ð4:20Þ
For additional iterations to approximate the inverse [29], we have
P 1 ¼ 0

for iter ¼ 1 : niter

P 1 ¼ Pþ ðI �P � LiÞ � P 1

end

P ¼ P 1
where niter is the number of symmetric sweeps in the iterative process.
The standard scheme, which is the RK(5,3) scheme described in Section 3.1, has five stages with three

weighted evaluations of the numerical dissipation. Thus, the amplification matrix is no longer a simple poly-
nomial in terms of the transformed operator. It is given by
Grk ¼ I � �a5fI � �a4C5½I � �a3
bQc þ ð�a3�a2

bQcC3 � �a2c3
bQdÞC1�gbQh þ �a5�a2c3ð1� c5ÞbQdC1

bQh ð4:21Þ

with
C1 ¼ I � �a1
bQc; C3 ¼ bQc þ c3

bQd; C5 ¼ bQc þ c5
bQd;

Qh ¼ PsL
h; Qc ¼ PsLc; Qd ¼ PsLd;
Ps being the two-dimensional form of the scalar implicit preconditioner given in Eq. (3.3), and c3 and c5

denoting the weights of the numerical dissipation (i.e. c3 ¼ 0:56; c5 ¼ 0:44), on the third and fifth stages,
respectively. The variable coefficients of the scalar preconditioner [20] are as follows:
bn ¼ max
1

4

N
N �ð1þ wARÞ

� �2

� 1

" #
; 0

( )
; ð4:22Þ

bg ¼ max
1

4

N

N �ð1þ wAR�1Þ

 !2

� 1

24 35; 0
8<:

9=;; ð4:23Þ
where N is the CFL number for the preconditioned scheme, N* is the CFL number for the basic RK scheme,
AR denotes aspect ratio ðhx=hyÞ, and w is a parameter (taken to be 0.11). Usually, the CFL number ratio N/N*

is 2 and N ¼ 7:5.
As a reference, we examine the damping characteristics of the standard scheme. Let k be an eigenvalue of

the amplification matrix Grk, which is defined by Eq. (4.21) and is a function of the phase angles ðhx; hyÞ asso-
ciated with the Cartesian coordinates ðx; yÞ. Also, let gðhx; hyÞ ¼ max½kðGrkÞ� for a given ðhx; hyÞ. For the anal-
ysis we consider a flow Mach number of 0.5 and a flow angle of 45�. Fig. 1(a) shows the contours of g when
AR ¼ 1. The damping of the high-high, high-low, and low-high frequency modes is similar. The smoothing
factor, which is the maximum g outside the dashed line square (i.e. p

2
6 jhxj; jhy j 6 p) of Fig. 1(a), is approx-

imately 0.75. To have a good smoother for full-coarsened multigrid, the difference operator must have good
h-ellipticity. That is, all of the modes with high-frequency components must be well damped. A good smoother
is also one that clusters the eigenvalues away from the unit circle (stability boundary), with most, if not all, of
them lying within the circle with radius of 1/2 (i.e. a smoothing factor of 1/2). In Fig. 1(b), which shows the
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eigenvalue spectrum kðGÞ when G ¼ Grk, we see that this scheme exhibits rather poor eigenvalue clustering, as
a large number of eigenvalues lie outside the dashed line circle. Fig. 2(a) displays the damping behavior when
AR ¼ 100. For this case the high-low frequency modes are either poorly damped or not damped at all. Such
damping behavior supports the convergence slowdown when the standard scheme is used as a multigrid
smoother and the mesh AR is increased. Fig. 2(b) shows the corresponding eigenvalue distribution, exhibiting
once again poor clustering.

For the RK/implicit scheme we first consider the influence of the implicit parameter e on its damping behav-
ior. In Fig. 3 the variation of g ¼ max½kðGrkiÞ� for the 5-stage and 3-stage RK/implicit schemes applied to the
one-dimensional (1-D) Euler equations is shown. The amplification matrix Grki is defined by Eq. (4.17). The
importance of choosing an appropriate e is evident. In addition, as the number of RK stages decreases
the desired value of e increases. For the 5-stage and 3-stage schemes the analysis indicates that the best overall
damping is attained when e ¼ 0:4 and e ¼ 0:6, respectively. In practice we have found that the type of numerical
dissipation and the associated entropy fixes can also affect the choice of e. Numerical experiments in computing
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several 2-D flows have demonstrated that e ¼ 0:5 works well with matrix dissipation for both the 5-stage and
3-stage schemes. With Roe dissipation e ¼ 0:6 has proven to be a good choice for both schemes.

The contours of g and eigenvalue distribution for the 5-stage RK/implicit scheme are displayed in Fig. 4. In
Fig. 4(b) and in subsequent figures the amplification matrix G ¼ Grki. One can clearly see the improved damp-
ing and eigenvalue clustering of the 5-stage RK/implicit scheme relative to the RK/standard scheme.
Although not shown, the 3-stage scheme and a 2-stage scheme exhibit similar damping. For these results three
symmetric Gauss–Seidel (SGS) sweeps were performed to approximately invert the implicit operator. The
effect on the damping of the scheme due to a reduction in the number of SGS sweeps is seen in Fig. 5. While
two SGS sweeps produce similar damping behavior, there is a deterioration in the damping of some high-fre-
quency modes; in particular, those modes that have a high-frequency component in one mesh direction and a
low-frequency component in the other. When considering a less accurate approximation for the inverse of the
implicit operator, one must not only consider the possible adverse effect on the damping properties but also
the reduced computational effort. The reduction in the operation count may sufficiently reduce the overall
computational time to compensate for the slower convergence rate. In Fig. 6 the damping and eigenvalue dis-
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tribution of the 5-stage scheme when AR ¼ 100 are shown. Here again there is a dramatic improvement in
damping behavior relative to the standard scheme.

Based on the analysis of the RK/implicit scheme for the linear system there is no limitation on the CFL
number provided e is sufficiently large. This strong stability property provides flexibility in the scheme which
can be important as the mesh cell AR increases with increasing Reynolds number. For example, one may con-
sider the possibility of increasing the CFL number in a strip region near a solid boundary, since an unlimited
CFL number cannot be used throughout the domain when solving the nonlinear flow equations. Thus, one
could compensate for the decrease in time step as the AR increases, retaining good damping of the high-
frequency modes.

5. Numerical results

The RK/implicit scheme was used to compute turbulent, viscous flow over the RAE 2822 airfoil and the
ONERA M6 wing. The effects of turbulence were included by applying the Baldwin-Lomax model [31].



Table 1
Flow conditions for RAE 2822 airfoil

Cases M1 a (in degrees) Rec xtr=c

Case 1 0.676 1.93 5:7� 106 0.11
Case 9 0.730 2.79 6:5� 106 0.03
Case 10 0.750 2.81 6:2� 106 0.03
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The airfoil solutions were calculated with the Case 1, Case 9 and Case 10 flow conditions (see Table 1) from
the experimental investigation of Cook et al. [32]. For Case 1 the flow is primarily subsonic with a relatively
small region of supersonic flow. In Case 9, one of the most frequently used cases in evaluating computational
methods, there is a fairly strong shock occurring on the upper surface of the airfoil. For Case 10 a stronger
shock occurs on the upper surface, resulting in substantial separation behind the shock that nearly merges with
the trailing edge separation. This case often causes numerical oscillations that result in a significant deterio-
ration in the convergence rate. For the wing flow, solutions were computed with flow conditions from the
experiment of Schmitt and Charpin [33]. This is a supercritical flow with free-stream Mach number
M1 ¼ 0:84, angle of attack a ¼ 3:06	 and Reynolds number Re ¼ 11:7� 106. In this case a k shock occurs
on the upper surface of the wing, due to the double shock at the inboard stations merging with a much stron-
ger single shock at the outboard stations.

For computing solutions of the three RAE 2822 cases a structured C-type mesh with 64 cells in the normal
direction and 320 cells around the airfoil (256 cells on the airfoil) was used. The normal spacing of this mesh at
the airfoil surface is 1:0� 10�5, and the maximum cell aspect ratio occurring at the surface is 2413. In order to
investigate the performance of the RK/implicit scheme for a range of Reynolds numbers (between 5:7� 106

and 100� 106) a family of C-type meshes was generated [34]. These meshes are adapted to the Reynolds num-
ber of the flow, and the resulting cell aspect ratios vary from about 3000 to over 50,000. Each mesh has 368
cells around the airfoil (312 cells on the airfoil) and 88 cells normal to the airfoil. For these meshes the normal
spacing varies from 3:7� 10�6 to 2:3� 10�7. For the multigrid algorithm coarse meshes were created by elim-
inating every other mesh line in each coordinate direction (i.e. full coarsening). A four-level W-cycle (2-D) and
a three-level V-cycle (3-D) were employed to execute the multigrid. All 2-D calculations were performed on a
Linux workstation with a Pentium 4 and a dual 3.0 GHz processor.

In all the 2-D applications the same boundary conditions were imposed. On the surface the no-slip condi-
tion was applied. At the outer boundary Riemann invariants were used. A far-field vortex effect was included
to specify the velocity for an inflow condition at the outer boundary. A detailed discussion of the boundary
conditions is given in Ref. [20]. For the 3-D cases the far-field vortex effect was not included; but otherwise, the
boundary conditions were the same. The calculations were started on the solution grid with the initial solution
given as the free-stream conditions. When a full multigrid process was applied, the initial solution on a given
level of refinement was obtained from a coarser level.

5.1. Two-dimensional airfoil flows

In Fig. 7, the convergence histories for Case 9 of the RK/standard and the 5-stage RK/implicit schemes are
compared. For all results the residuals are normalized by the corresponding residual of the first iteration. The
number after RK indicates the number of stages. These histories show the behavior of the L2 norm of the
residual of the continuity equation with multigrid cycles. Unless indicated otherwise, the calculations were
started on the finest grid for the 2-D results. For the RK/standard scheme the numerical dissipation operator
is given by matrix dissipation [27], and for the RK5/implicit scheme the dissipation operator is based on the
Roe scheme [22]. In the calculations with the RK5/implicit scheme the CFL number was 16 during the first 8
multigrid cycles; and then, it was increased to 1000. From the figures, one can see that the RK5/implicit
scheme requires a factor of about 17 fewer multigrid cycles than the standard scheme to reduce the residual
13 orders of magnitude. The average rate of reduction of the residual (i.e. convergence rate) for the standard
scheme exceeds 0.98, while for the RK5/implicit scheme the rate is 0.76. With respect to computational effort,
the RK5/implicit scheme is about 2.5 times faster than the standard scheme. As shown in Ref. [36] the
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computed pressure distribution agrees fairly well with the experimental data. The computed and experimental
lift and drag coefficients are given in Table 2.

Similar convergence histories were obtained for Cases 1 and 10. In Tables 3–5 the convergence rates, num-
ber of multigrid cycles (to reduce residual thirteen orders of magnitude) and computational times are given for
both the RK/standard and RK5/implicit schemes applied to all cases. The effect on convergence of the RK5/
implicit due to alternative dissipation forms is also included in the tables. With matrix and HCUSP dissipation
the RK/implicit scheme is roughly between 2 and 2.7 times faster, in computer time, than the standard scheme
for all cases. The computational savings with the matrix dissipation is about the same as it is with the Roe
scheme dissipation even though the convergence rates are faster with the Roe scheme. This is because matrix
dissipation does not have the additional expense of evaluating a limiter for each characteristic field.

5.1.1. Implicit parameter

In Section 4, we examined in one dimension the damping behavior of the RK/implicit scheme with varia-
tion in the implicit parameter e. Using this analysis as guidance, we performed numerical experiments for a
Table 2
Computed lift and drag coefficients for RAE 2822 airfoil

Cases CL CD ðCDÞp ðCDÞv
Case 1 0.6101 0.008315 0.002528 0.005787
Case 9 0.8530 0.01783 0.01232 0.005506
Case 10 0.8480 0.02885 0.02342 0.005409

Numerical dissipation from Roe scheme. Weak grid clustering in neighborhood of shock wave.

Table 3
Computational effort required for Case 1, 320� 64 grid

Scheme Dissipation CPU time (s) MG cycles Convergence rate

RK/standard Matrix 481 1792 0.983
RK5/implicit Roe 180 98 0.736
RK3/implicit Roe 111 97 0.733
RK5/implicit Matrix 202 128 0.791
RK3/implicit Matrix 126 127 0.789
RK5/implicit HCUSP 243 146 0.815
RK3/implicit HCUSP 152 145 0.813



Table 4
Computational effort required for Case 9, 320� 64 grid

Scheme Dissipation CPU time (s) MG cycles Convergence rate

RK/standard Matrix 509 1891 0.984
RK5/implicit Roe 201 110 0.761
RK3/implicit Roe 126 110 0.761
RK5/implicit Matrix 203 128 0.791
RK3/implicit Matrix 124 125 0.787
RK5/implicit HCUSP 242 145 0.813
RK3/implicit HCUSP 150 144 0.812

Table 5
Computational effort required for Case 10, 320� 64 grid

Scheme Dissipation CPU time (s) MG cycles Convergence rate

RK/standard Matrix 680 2519 0.988
RK5/implicit Roe 260 143 0.811
RK3/implicit Roe 161 141 0.808
RK5/implicit Matrix 252 159 0.828
RK3/implicit Matrix 152 153 0.822
RK5/implicit HCUSP 261 157 0.826
RK3/implicit HCUSP 163 155 0.824
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range of flow conditions to determine an appropriate e for a given type of dissipation. The values of e selected
for the schemes with Roe and matrix dissipation are 0.6 and 0.5, respectively. On the coarse meshes of the
multigrid method e is 0.4. Fig. 8 shows the effect of varying e on the convergence of two RK5/implicit schemes
for Case 9. With Roe dissipation there is a relatively small variation in convergence (i.e. convergence rate
between 0.75 and 0.77) when e is changed by �0:1. The variation with matrix dissipation is somewhat larger,
as the convergence rate is between 0.76 and 0.81. This larger variation in convergence rate may be due to dif-
ferences between the explicit operator (matrix dissipation) and the implicit operator (Roe dissipation).
Cycles

||L
og

(R
es

)||
2

0 50 100 150 200 250-14

-12

-10

-8

-6

-4

-2

0
ε = 0.5
ε = 0.6
ε = 0.7

RAE 2822, Case 9, RK5/Implicit, Roe Dissip.

320 x 64

Cycles

||L
og

(R
es

)||
2

0 50 100 150 200 250-14

-12

-10

-8

-6

-4

-2

0
ε = 0.4
ε = 0.5
ε = 0.6

RAE 2822, Case 9, RK5/Implicit, Matrix Dissip.

320 x 64

Fig. 8. Effect of implicit parameter e on convergence of the RK5/implicit scheme with two types of dissipation: Case 9, 320� 64 grid.
(a) Roe dissipation, (b) matrix dissipation.



Cycles

L
o

g
(||

R
es

|| 2
)

0 100 200 300 400 500
-14

-12

-10

-8

-6

-4

-2

0

Roe, Re = 5.7 x 106

matrix, Re = 5.7 x 106

Roe, Re = 100 x 106

matrix, Re = 100 x 106

RAE 2822, Case1, RK5/Implicit

366 x 88

Fig. 9. Convergence histories of RK5/implicit schemes with Roe and matrix dissipation showing effect of Reynolds number variation:
Case 1, 366� 88 grid.

R.C. Swanson et al. / Journal of Computational Physics 224 (2007) 365–388 381
5.1.2. Scheme behavior for high AR grids

The results presented so far are for a grid with moderately high aspect ratio cells. To investigate how the
RK/implicit scheme alleviates stiffness associated with high aspect ratio cells, calculations were performed
with the Reynolds number varying by more than an order of magnitude. The computational meshes are
the same as the ones used by Faßbender [34] to examine the effects of Reynolds number variation on turbu-
lence modeling. To avoid difficulties, such as convergence stall, that can occur due to limiter functions, the
flow conditions ðM1; aÞ for an essentially subsonic case (Case 1) were used for the calculations. In Fig. 9, con-
vergence histories are presented for the RK5/implicit scheme with Roe and matrix dissipation forms when
Re ¼ 5:7� 106 and Re ¼ 100� 106. The maximum surface grid cell aspect ratios for the two Re values are
3949 and 50,260. From the two sets of curves in the figure we see that over the Re range the number of mul-
tigrid cycles only increases by a factors of 2.3 and 2.7 with Roe and matrix dissipation, respectively. In Tables
6 and 7 the convergence rates and computing times for Re ¼ 5:7� 106 and Re ¼ 100� 106 are displayed. Con-
vergence quantities for other Reynolds numbers are given in Ref. [36]. For higher Re values the convergence
Table 7
Computational effort required for Case 1, 368� 88 grid, Re ¼ 100� 106; AR ¼ 50; 260

Scheme Dissipation CPU time (s) MG cycles Convergence rate

RK/standard Matrix 3458 7865 0.996
RK5/implicit Roe 841 291 0.902
RK3/implicit Roe 521 286 0.901
RK5/implicit Matrix 980 384 0.925
RK3/implicit Matrix 600 378 0.924

Table 6
Computational effort required for Case 1, 368� 88 grid, Re ¼ 5:7� 106; AR ¼ 3949

Scheme Dissipation CPU time (s) MG cycles Convergence rate

RK/standard Matrix 1105 2516 0.988
RK5/implicit Roe 371 128 0.791
RK3/implicit Roe 230 126 0.788
RK5/implicit Matrix 368 140 0.807
RK3/implicit Matrix 217 136 0.802
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rate with the standard scheme exceeds 0.995. Using the Roe scheme dissipation, the RK5/implicit scheme con-
verges at rates between 0.88 and 0.90 for the higher Re values (i.e. at higher cell aspect ratios). The correspond-
ing reduction in computational time is about a factor of 4 relative to the standard scheme.

5.1.3. Reducing number of RK stages

There are several alternative ways to increase the computational efficiency. One alternative is to reduce the
number of stages in the RK scheme. With such an approach one would expect almost no loss in numerical
efficiency, since we use a CFL number of 1000. Calculations were performed for Cases 1, 9, and 10 with
the RK/implicit scheme using 3 stages and CFL ¼ 1000. The solutions were obtained with the same (moder-
ately high aspect ratio) 320� 64 grid used for the results of the RK/implicit scheme with 5 stages. Fig. 10
shows the convergence histories with the matrix and HCUSP dissipation forms, respectively. As indicated
in Tables 3–7 the convergence rates with the 5-stage and 3-stage schemes for each dissipation form are nearly
the same. The RK3/implicit scheme with Roe and matrix dissipation is about 4–6.5 and 3.8–5.5 times faster,
respectively, (depending on the Reynolds number) than the RK/standard scheme. Another approach for
reducing the computing time is to lower the number of RK stage evaluations of the numerical dissipation
and/or to decrease the number of SGS sweeps for approximately inverting the implicit operator. For example,
Rossow [35] demonstrates that even with the convergence rate penalty produced by performing only one SGS
sweep rather than three sweeps there is more than a 25% reduction in the computational time.

5.1.4. Effect of full multigrid

Convergence of the solution, to the approximate level of the truncation error, can be accelerated by imple-
menting full multigrid (FMG). The residual and lift coefficient (CL) convergence histories for the 3-stage
RK/implicit scheme with Roe dissipation and FMG are shown in Fig. 11. The calculation was done for Case
9 with the 320� 64 grid using 4 levels of refinement, which contain 1, 2, 3, and 4 grids. After just 10 iterations
on the single grid, multigrid was executed on each successive level for 100 cycles. This allows a CFL number of
1000 for finer levels. With 4 cycles on the final level the CL is obtained to within 1% of the converged value.
Only 10 cycles are required to get the lift and drag coefficients to 3 significant figures. As seen in Fig. 12 the
surface pressure distribution at 10 cycles is nearly identical to the corresponding one at 100 cycles.

5.2. Three-dimensional wing flows

For the 3-D computations of flow around the ONERA M6 wing a single block C–O mesh topology contain-
ing a total of 192� 48� 32 cells (streamwise, normal and spanwise directions) was used. Matrix dissipation



Cycles

C
L

0 100 200 300 400
-14

-12

-10

-8

-6

-4

-2

0

0

0.2

0.4

0.6

0.8

1
RAE 2822, RK3/Implicit, Roe Dissip., FMG

Lo
g(

R
es

2)
||

||

Fig. 11. Convergence history of RK3/implicit scheme with Roe dissipation and FMG: Case 9, 320� 64 grid.
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was applied with the RK/implicit schemes. In Table 8, we compare the convergence rates of the standard and
5-stage RK/implicit schemes for a range of Mach numbers. The approximate computer time in minutes
required (on a DEC UNIX single processor workstation) to reduce the residual 6 orders of magnitude is also
Table 8
Comparison of convergence rates of the RK/standard scheme and RK5/implicit scheme (with matrix dissipation) for the ONERA M6
wing at several Mach numbers

Mach no. RK/Standard convergence
rate

MG
cycles

CPU time (min) RK/implicit convergence
rate

MG
cycles

CPU time (min)

0.30 .988 950 491 .896 108 111
0.84 .982 734 380 .758 46 46
0.95 .981 698 363 .800 58 59
1.05 .978 609 315 .677 34 35
1.10 .978 604 312 .677 34 34

V-cycle with residual reduced 6 orders.



Table 9
Effect of number of RK stages and SGS sweeps on convergence of the RK/implicit scheme (with matrix dissipation) for the ONERA M6
wing

Scheme SGS sweeps e MG cycles Convergence rate CPU time (min)

RK/standard – – 4444 .995 1178
RK5/implicit 3 .45 166 .889 163
RK5/implicit 2 .45 168 .891 138
RK5/implicit 1 .45 243 .923 146
RK3/implicit 3 .45 180 .898 118
RK3/implicit 2 .45 167 .890 88
RK2/implicit 3 .65 195 .904 88
RK2/implicit 2 .5 189 .902 68

FMG with V-cycle and residual reduced 9 orders on fine grid.
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given. Multigrid without FMG was used to accelerate the convergence. For the RK/implicit scheme the CFL
number was gradually increased from 10 to 40 over the first 9 cycles, and then it was increased to 1000. In all
cases, even when the oncoming flow is mildly supersonic, the RK5/implicit scheme converges significantly fas-
ter. At the lowest Mach number ðM1 ¼ 0:3Þ the RK/implicit scheme converges somewhat slower than it does at
transonic speeds (when M1 < 1:0). However, as demonstrated by Rossow [35], this scheme with Roe dissipa-
tion exhibits the same convergence for low M1 (i.e. 6 0:3) as it does for transonic Mach numbers, when the
implicit and residual operators are preconditioned by modifying the sound speed (see Appendix A) in the
numerical dissipation operators. Thus, one would anticipate a similar behavior with the matrix dissipation if
the dissipation is modified appropriately.

If we consider all the cases of Table 8, the computational efficiency relative to the standard scheme is
increased by factors between 4 and 9. In addition, the present RK5/implicit scheme exhibits better 3-D per-
formance than observed previously [36]. This can be seen by considering the M1 ¼ 0:84 case. For this case
the residual is reduced 6 orders at a rate of 0.758, whereas the rate for previous results is 0.791. The improve-
ment in convergence is due to the reduction of the entropy fix cutoff for the implicit operator.

As noted previously, the computational efficiency of the RK/implicit scheme is affected by both the number
of RK stages and the number of SGS sweeps for approximately inverting the implicit operator. In Table 9, we
present for the baseline ONERA M6 wing case ðM ¼ 0:84Þ the performance of the RK/implicit scheme with
matrix dissipation as the number of RK stages and SGS sweeps is varied. The solutions were obtained using a
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Fig. 13. Convergence histories, on the finest grid, of the RK/standard scheme and several RK/implicit schemes with FMG, matrix
dissipation, and 2 SGS sweeps: ONERA M6 wing, 192� 48� 32 grid. (a) Residual and (b) lift coefficient.
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V-cycle and FMG with 20, 20, and 200 multigrid cycles on 3 levels of refinement. For each calculation the L2

norm of the residual was reduced at least 9 orders of magnitude, measured from the start of the level with the
finest grid. Table 9 also includes the convergence rate (when a 9 order reduction on the finest mesh was
reached) and the implicit parameter e used on the finest mesh of each refinement level. On the coarse meshes
an e of 0.4 was used. The 2-stage scheme [30] with 2 SGS sweeps is the most efficient scheme with respect to
computer time. However, it should be pointed out that in various 2-D applications the 3-stage scheme with 2
SGS sweeps has proven to be more robust. This scheme is more than 10 times faster than the standard scheme.

In Fig. 13, the residual and CL histories on the solution grid of the 5-stage, 3-stage, and 2-stage RK/implicit
schemes with 2 SGS sweeps and FMG are shown. The residual histories of the 5-stage and 3-stage schemes are
essentially the same. Both the lift and drag coefficients are converged to within 0.1% in just 24 cycles on the
fine grid.

6. Concluding remarks

A Runge–Kutta scheme preconditioned with a fully implicit operator has been implemented as a smoother
for multigrid. The implicit operator extends the stability limit of the RK scheme, allowing the problem of geo-
metric stiffness to be addressed. Fourier analysis has been performed to compare the smoothing properties of
the RK/implicit scheme with those of a RK/standard scheme, which is used in many existing computer codes
for solving the Euler and Navier–Stokes equations. The analysis has demonstrated that the RK scheme with a
fully implicit operator exhibits much better damping behavior than the standard scheme.

In all applications considered a CFL number of 1000 has been used. The RK/implicit scheme has been
applied with different dissipation operators, such as the Roe scheme, matrix dissipation, and the CUSP
scheme. The amenability of the scheme to different forms of dissipation is quite important due to the wide
usage of RK schemes accelerated by implicit residual smoothing and multigrid. The RK/implicit scheme
can be easily implemented in these codes by replacing the scalar implicit operator with the fully implicit
operator.

The performance of the RK/implicit scheme with different numerical dissipation formulations has been
evaluated by solving the 2-D, Reynolds-Averaged Navier–Stokes (RANS) equations for three turbulent airfoil
flow test cases, including a difficult transonic case with significant separation. Both 5-stage and 3-stage
schemes have been considered. In addition, the effect of mesh aspect ratio on convergence has been investi-
gated. With Roe dissipation the 3-stage RK/implicit scheme is 4–6.5 times faster (depending on the Reynolds
number) than a RK/standard scheme, which is a well tuned 5-stage RK scheme with multigrid and scalar
implicit residual smoothing. It should be emphasized that the RK/standard scheme has only 3 evaluations
of the dissipation, all the characteristic fields are limited in the same way, and the residual smoothing is a sca-
lar procedure. The RK3/implicit scheme with matrix dissipation is 3.8–5.5 times faster than the RK/standard
scheme.

The RK/implicit scheme has also been used to solve the 3-D RANS equations for turbulent transonic flow
over the ONERA M6 wing. Using matrix dissipation and 3 SGS sweeps to approximately invert the fully
implicit operator, the RK5/implicit scheme is about 7 times faster than the RK/standard scheme. Additional
improvement in computational efficiency has been demonstrated by reducing the number of stages and/or
SGS sweeps. The three-stage RK/implicit with 2 SGS sweeps is roughly 10 times faster in reducing the residual
by 9 orders of magnitude. We have not attempted to reduce the computational time at the expense of addi-
tional storage.
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Appendix A

The flux difference splitting dissipation expressed in terms of Mach number can be written as
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DF qw
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with D indicating the difference between left and right states, and
D ¼
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; ð7:2Þ
where c is the specific heat ratio, H is the specific total enthalpy, c is the speed of sound, and a1 ¼ 1� jM0j. The
normal velocity qn ¼ nxuþ nyvþ nzw, where the ðnx; ny ; nzÞ are the components of the outward facing unit nor-
mal at a cell face. The cell face normal is scaled by b.

The positive and negative contributions to the matrix Pn are given by
Pþn ¼
b
2
ðqn þ jqnjÞIþ

b
2

0 a1

c nxqa3 nyqa3 nzqa3

0 ðc� 1Þ h
c a1 nxcpa3 nycpa3 cnzpa3

0 nxq�1a3 nxnxca1 nxnyca1 nxnzca1

0 nyq�1a3 nynxca1 nynyca1 nynzca1

0 nzq�1a3 nznxca1 nznyca1 nznzca1

26666664

37777775; ð7:3Þ

P�n ¼
b
2
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2
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where a2 ¼ 1�M0, and a3 ¼ 1þM0. When scaling the numerical dissipation for low-speed flows, the speed of
sound c appearing in the matrices Pþn and P�n is replaced by the low-speed preconditioning speed of sound c 0,
where
c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q2 þM2

r c2

q
; ð7:5Þ
with q denoting the flow speed, and Mr representing the reference Mach number, which is defined as
a ¼ 1

2
ð1�M2

r Þ; M2
r ¼ min max

q2

c2
; k

q2
1

c2
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; 1

� �
: ð7:6Þ
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The parameter k is taken to be unity, and the subscript1 denotes free-stream condition. Although we use the
modified sound speed c 0 in the computation of Pþn and P�n in the present paper, this is not a requirement for
effective performance of the RK/implicit algorithm [35].

In this paper we apply the thin-layer assumption to the Navier–Stokes equations. For 2-D applications this
assumption means that only the viscous terms associated with the direction normal to a solid surface are
retained, while for 3-D problems all viscous terms except the cross-derivative terms are retained. Thus, the
viscous matrix for the implicit preconditioner is given by
Bn ¼
fndb

2

qV

0 0 0 0 0

�c l
Pr

p
q c l

Pr 0 0 0

0 0 nxnxl� nxnyl� nxnzl�

þl

0 0 nynxl� nynyl� nynzl�

þl

0 0 nznxl� nznyl� nznzl�

þl

266666666666664

377777777777775
; ð7:7Þ
where fnd is a factor due to nondimensionalization of the governing flow equations and l� ¼ kþ l. By the
Stokes’ hypothesis k ¼ � 2

3
l, and the coefficient of viscosity l ¼ ll þ lt, where the subscripts l and t refer

to laminar and turbulent values. The quantity Pr is the Prandtl number, which is determined by the sum
Prl þ Prt.
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